By Topic

Fractal Consistency: Architecting the Memory System to Facilitate Verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Meng Zhang ; Duke University, Durham ; Alvin Lebeck ; Daniel Sorin

One of the most challenging problems in developing a multicore processor is verifying that the design is correct, and one of the most difficult aspects of pre-silicon verification is verifying that the memory system obeys the architecture's specified memory consistency model. To simplify the process of pre-silicon design verification, we propose a system model called the Fractally Consistent Model (FCM). We prove that systems that adhere to the FCM can be verified to obey the memory consistency model in three simple, scalable steps. The procedure for verifying FCM systems contrasts sharply with the difficult, non-scalable procedure required to verify non-FCM systems. We show that FCM systems do not necessarily sacrifice performance, compared to non-FCM systems, despite being simpler to verify.

Published in:

IEEE Computer Architecture Letters  (Volume:9 ,  Issue: 2 )