Cart (Loading....) | Create Account
Close category search window

Analysis of spontaneous MEG activity in mild cognitive impairment using spectral entropies and disequilibrium measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bruña, R. ; Dept. TSCIT, Univ. of Valladolid, Valladolid, Spain ; Poza, J. ; Gómez, C. ; Fernández, A.
more authors

The aim of this study was to explore the ability of several spectral entropies and disequilibrium measures to discriminate between spontaneous magnetoencephalographic (MEG) oscillations from 18 mild cognitive impairment (MCI) patients and 24 controls. The Shannon spectral entropy (SSE), Tsallis spectral entropy (TSE), and Rényi spectral entropy (RSE) were calculated from the normalized power spectral density to evaluate the irregularity patterns. In addition, the Euclidean (ED) and Wootters (WD) distances were computed as disequilibrium measures. Results revealed statistically significant lower SSE and TSE(2) values for MCI patients than for controls (p <; 0.05) in the right lateral region of the brain. ED also obtained statistically significant lower values for MCI patients than for controls using the (p <; 0.05) in the right lateral region of the brain. These findings suggest that MCI is associated with a significant decrease in irregularity of MEG activity. In addition, the highest accuracy of 64.3% was achieved by the SSE. We conclude that measures from information theory can be useful to both characterize abnormal brain dynamics and help in MCI detection.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE

Date of Conference:

Aug. 31 2010-Sept. 4 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.