Cart (Loading....) | Create Account
Close category search window
 

Effect of pressurization methods on the accuracy of wrist blood pressure measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jong Pal Kim ; Samsung Adv. Inst. of Technol., Yongin, South Korea ; Sangkon Bae ; Youn Ho Kim ; KyoungHo Kang
more authors

In developing a wrist blood pressure monitor of high and reliable accuracy, the effect of different pressurization methods on the accuracy of blood pressure measurement at the wrist using oscillometry is investigated in this paper. 30 volunteers are recruited and blood pressure readings are taken with three different methods of pressurizing the wrist. It was found that measurement of mean arterial pressure (MAP) is more accurate when the wrist is locally compressed directly over the radial artery (-2.6 ± 11.4 mmHg) or with a region of surrounding tissue (10.3 ± 6.0 mmHg) than when the whole wrist is compressed by a conventional, constricting cuff (-11.4 ± 16.4 mmHg). Characteristics of accuracy, however, differ between the two local pressurization methods. While a square airbag that compresses the wrist directly over the radial artery may measure the most accurate MAP on average, the range of errors among individuals is large. Contrarily, measurements taken by pressurizing a region over the radial artery with a bladder are least affected by individual variability. In order to measure blood pressure accurately at the wrist while unbiased by the population-based algorithmic compensation to ensure accuracy among different individuals, therefore, the use of local pressurization method may be the most appropriate.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE

Date of Conference:

Aug. 31 2010-Sept. 4 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.