Cart (Loading....) | Create Account
Close category search window
 

Incremental learning control of the DLR-HIT-Hand II during interaction tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Alessi, A. ; Campus Bio-Med., Lab. of Biomed. Robot. & Biomicrosystems, Univ. of Rome, Rome, Italy ; Zollo, L. ; Lonini, L. ; De Falco, R.
more authors

In this paper a bio-inspired control architecture for a robotic hand is presented. It relies on the same mechanisms of learning inverse internal models studied in humans. The control is capable of developing an internal representation of the hand interacting with the environment and updating it by means of the interaction forces that arise during contact. The learning paradigm exploits LWPR networks, which allow efficient incremental online learning through the use of spatially localized linear regression models. Additionally this paradigm limits negative interference when learning multiple tasks. The architecture is validated on a simulated finger of the DLR-HIT-Hand II performing closing movements in presence of two different viscous force fields, perturbing its motion.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE

Date of Conference:

Aug. 31 2010-Sept. 4 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.