By Topic

Study to prevent the density of microcapsules from diffusing in blood vessel by local acoustic radiation force

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Masuda, K. ; Grad. Sch. of Bio-Applic. & Syst. Eng., Tokyo Univ. of Agric. & Technol., Tokyo, Japan ; Watarai, N. ; Nakamoto, R. ; Miyamoto, Y.
more authors

We have already reported our attempt to constrain direction of microcapsules in flow owing to an acoustic radiation force. However, the diameter of capsules was too large not to be applied in vivo. Furthermore, acoustic radiation force affected only in focal area because focused ultrasound was used. Thus we have improved our experiment by using microcapsules as small as blood cells and introducing a plane wave of ultrasound. We prepared an artificial blood vessel including a Y-form bifurcation established two observation areas. Then we newly defined the induction index to evaluate the difference of capsule density in two paths of downstream. As the result, optimum angle of ultrasound emission to induce to desired path was derived. And the induction index increased in proportion to the central frequency of ultrasound, which is affected by forming aggregation of capsules to receive more radiation force.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE

Date of Conference:

Aug. 31 2010-Sept. 4 2010