By Topic

EEG feature selection using mutual information and support vector machine: A comparative analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carlos Guerrero-Mosquera ; Signal Theory and Communications department, University Carlos III of Madrid Avda. Universidad, 30 28911 Leganes. Spain ; Michel Verleysen ; Angel Navia Vazquez

The large number of methods for EEG feature extraction demands a good choice for EEG features for every task. This paper compares three subsets of features obtained by tracks extraction method, wavelet transform and fractional Fourier transform. Particularly, we compare the performance of each subset in classification tasks using support vector machines and then we select possible combination of features by feature selection methods based on forward-backward procedure and mutual information as relevance criteria. Results confirm that fractional Fourier transform coefficients present very good performance and also the possibility of using some combination of this features to improve the performance of the classifier. To reinforce the relevance of the study, we carry out 1000 independent runs using a bootstrap approach, and evaluate the statistical significance of the Fscore results using the Kruskal-Wallis test.

Published in:

2010 Annual International Conference of the IEEE Engineering in Medicine and Biology

Date of Conference:

Aug. 31 2010-Sept. 4 2010