By Topic

Automatic segmentation of the cerebellum of fetuses on 3D ultrasound images, using a 3D Point Distribution Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Becker, B.G. ; Image Anal. & Visualization Lab., CCADET UNAM, Mexico City, Mexico ; Cosío, F.A. ; Huerta, M.E.G. ; Benavides-Serralde, J.A.

Analysis of fetal biometric parameters on ultrasound images is widely performed and it is essential to estimate the gestational age, as well as the fetal growth pattern. The use of three dimensional ultrasound (3D US) is preferred over other tomographic modalities such as CT or MRI, due to its inherent safety and availability. However, the image quality of 3D US is not as good as MRI and therefore there is little work on the automatic segmentation of anatomic structures in 3D US of fetal brains. In this work we present preliminary results of the development of a 3D Point Distribution Model (PDM), for automatic segmentation, of the cerebellum in 3D US of the fetal brain. The model is adjusted to a fetal 3D ultrasound, using a genetic algorithm which optimizes a model fitting function. Preliminary results show that the approach reported is able to automatically segment the cerebellum in 3D ultrasounds of fetal brains.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE

Date of Conference:

Aug. 31 2010-Sept. 4 2010