Cart (Loading....) | Create Account
Close category search window
 

Automatic reconstruction of activation and velocity maps from electro-anatomic data by radial basis functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Masè€, M. ; Dept. of Phys., BIOtech, Trento, Italy ; Ravelli, F.

The integration of mapping techniques with suitable methods for the characterization and visualization of propagation patterns may enhance the targeting of critical arrhythmic areas, thus optimizing the ablative treatment of atrial arrhythmias. In this study, we tested the feasibility of an innovative approach for the automatic determination of activation and velocity maps from sparse data as provided by electro-anatomic mapping systems. The proposed algorithm reconstructed the activation process by a radial basis function (RBF) interpolation of mapping point latencies. Velocity vectors were analytically determined by differentiation of the interpolation function. The method was tested by a multistate cellular automaton simulation model, implemented on a CARTO-derived atrial endocardial surface, and reconstruction accuracy was evaluated as a function of the number of mapping points. The RBF algorithm accurately reconstructed wave propagation patterns in simulated tissues with homogeneous and heterogeneous conduction properties, consistently with the data access afforded by clinical practice. These preliminary results suggest the possible integration of the method with clinically-used mapping systems to favor the identification of specific propagation patterns and conduction disturbances.

Published in:

Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE

Date of Conference:

Aug. 31 2010-Sept. 4 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.