By Topic

Automatic liver segmentation from CT scans based on a statistical shape model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xing Zhang ; Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China ; Jie Tian ; Kexin Deng ; Yongfang Wu
more authors

In this paper, we present an algorithm for automatic liver segmentation from CT scans which is based on a statistical shape model. The proposed method is a hybrid method that combines three steps: 1) Localization of the average liver shape model in a test CT volume via 3D generalized Hough transform; 2) Subspace initialization of the statistical shape model; 3) Deformation of the shape model to adapt to liver contour through an optimal surface detection approach based on graph theory. The proposed method is evaluated on MICCAI 2007 liver segmentation challenge datasets. The experiment results demonstrate availability of the proposed method.

Published in:

2010 Annual International Conference of the IEEE Engineering in Medicine and Biology

Date of Conference:

Aug. 31 2010-Sept. 4 2010