By Topic

A CMOS Active Feedback Balun-LNA With High IIP2 for Wideband Digital TV Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Donggu Im ; Korea Advanced Institute of Science and Technology, Department of Electrical Engineering, Daejeon, Korea ; Ilku Nam ; Kwyro Lee

A wideband active feedback single-to-differential (S-to-D) low-noise amplifier (LNA) for digital TV (DTV) tuners composed of a S-to-D converter, a voltage combiner, and a negative feedback network is proposed to achieve low noise as well as to improve the linearity performances (IIP2 and IIP3) simultaneously. By feeding the single-ended output of the voltage combiner, which is used for combining the differential output of the S-to-D converter, to the input of the LNA through the feedback network, a wideband S-to-D LNA exploiting negative feedback is implemented. The differential mode operation of the voltage combiner reduces the second-order nonlinearity feedback, allowing us to improve both the IIP3 and IIP2 of the LNA at the same time. Two LNA design examples are presented to demonstrate usefulness of the proposed approach. The LNA I, by adopting a common source (CS) amplifier with a common gate, common source (CGCS) balun load as the S-to-D converter, is able to achieve a high gain and a low noise figure (NF) by increasing the loop gain. The LNA II using the differential amplifier with the ac-grounded second input terminal is designed for robust IIP2 to PVT variations.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:58 ,  Issue: 12 )
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal