Cart (Loading....) | Create Account
Close category search window

CA-Tree: A Hierarchical Structure for Efficient and Scalable Coassociation-Based Cluster Ensembles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tsaipei Wang ; Dept. of Comput. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan

Cluster ensembles have attracted a lot of research interests in recent years, and their applications continue to expand. Among the various algorithms for cluster ensembles, those based on coassociation matrices are probably the ones studied and used the most because coassociation matrices are easy to understand and implement. However, the main limitation of coassociation matrices as the data structure for combining multiple clusterings is the complexity that is at least quadratic to the number of patterns N. In this paper, we propose CA-tree, which is a dendogram-like hierarchical data structure, to facilitate efficient and scalable cluster ensembles for coassociation-matrix-based algorithms. All the properties of the CA-tree are derived from base cluster labels and do not require the access to the original data features. We then apply a threshold to the CA-tree to obtain a set of nodes, which are then used in place of the original patterns for ensemble-clustering algorithms. The experiments demonstrate that the complexity for coassociation-based cluster ensembles can be reduced to close to linear to N with minimal loss on clustering accuracy.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 3 )

Date of Publication:

June 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.