By Topic

Noise and Recording Properties of Barium-Ferrite Particulate Media Studied by Micromagnetic Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jubert, P.O. ; IBM Res. - Almaden, San Jose, CA, USA ; Biskeborn, B. ; Qiu, D. ; Matsumoto, A.
more authors

We study noise and recording properties of nonoriented barium-ferrite particulate media using micromagnetic modeling. The packing and orientation distribution of the barium ferrite particles are reproduced very well with our packing algorithm. The distribution of switching fields is determined from experimental hysteresis loops. Using these parameters, we perform recording simulations of periodic waveforms written at various frequencies and extract broad-band signal-to-noise ratio (BB-SNR). Comparison to experimental measurements shows very similar signal and noise characteristics, with however a 6 dB offset in BB-SNR values. Other (e.g., mechanical) noise sources would need to be included in the simulations to account for the difference. Nevertheless, the simulations prove very useful to understand and quantify how particle and media parameters contribute to the signal-to-noise ratio. For the present nonoriented particulate medium, we verify that the particle volume distribution affects the noise power according to the existing analytical expression for particulate noise. The particle anisotropy distribution is found to significantly affect the signal roll-off. The related variation in BB-SNR is found to be in good quantitative agreement with experiments. The effects of other parameters on BB-SNR, such as dipolar coupling, medium thickness, and average head-medium spacing, are also presented. An analytical slope model is proposed for nonoriented media that reproduces the simulations and experimental data very well.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 2 )