By Topic

Computation of Convergence Bounds for Volterra Series of Linear-Analytic Single-Input Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thomas Helie ; Centre Georges Pompidou – CNRS STMS UMR 9912, Ircam, Paris, France ; Béatrice Laroche

In this paper, the Volterra series decomposition of a class of single-input time-invariant systems, analytic in state and affine in input, is analyzed. Input-to-state convergence results are obtained for several typical norms (L ([0,T]), L (R+) as well as exponentially weighted norms). From the standard recursive construction of Volterra kernels, new estimates of the kernel norms are derived. The singular inversion theorem is then used to obtain the main result of the paper, namely, an easily computable bound of the convergence radius. Guaranteed error bounds for the truncated series are also provided. The relevance of the method is illustrated in several examples.

Published in:

IEEE Transactions on Automatic Control  (Volume:56 ,  Issue: 9 )