Cart (Loading....) | Create Account
Close category search window
 

Analyticity, Convergence, and Convergence Rate of Recursive Maximum-Likelihood Estimation in Hidden Markov Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tadic, Vladislav B. ; Dept. of Math., Univ. of Bristol, Bristol, UK

This paper considers the asymptotic properties of the recursive maximum-likelihood estimator for hidden Markov models. The paper is focused on the analytic properties of the asymptotic log-likelihood and on the point-convergence and convergence rate of the recursive maximum-likelihood estimator. Using the principle of analytic continuation, the analyticity of the asymptotic log-likelihood is shown for analytically parameterized hidden Markov models. Relying on this fact and some results from differential geometry (Lojasiewicz inequality), the almost sure point convergence of the recursive maximum-likelihood algorithm is demonstrated, and relatively tight bounds on the convergence rate are derived. As opposed to the existing result on the asymptotic behavior of maximum-likelihood estimation in hidden Markov models, the results of this paper are obtained without assuming that the log-likelihood function has an isolated maximum at which the Hessian is strictly negative definite.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 12 )

Date of Publication:

Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.