By Topic

New Sequences of Capacity Achieving LDPC Code Ensembles Over the Binary Erasure Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saeedi, H. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada ; Banihashemi, A.H.

In this paper, new sequences (λn, ρn) of capacity achieving low-density parity-check (LDPC) code ensembles over the binary erasure channel (BEC) is introduced. These sequences include the existing sequences by Shokrollahi et al. as a special case. For a fixed code rate R, in the set of proposed sequences, Shokrollahi's sequences are superior to the rest of the set in that for any given value of n, their threshold is closer to the capacity upper bound 1 - R. For any given δ, 0 <;; δ <;; 1 - R, however, there are infinitely many sequences in the set that are superior to Shokrollahi's sequences in that for each of them, there exists an integer number n0, such that for any n > n0, the sequence (λn, ρn) requires a smaller maximum variable node degree as well as a smaller number of constituent variable node degrees to achieve a threshold within δ-neighborhood of the capacity upper bound 1 - R. Moreover, it is proven that the check-regular subset of the proposed sequences are asymptotically quasi-optimal, i.e., their decoding complexity increases only logarithmically with the relative increase of the threshold. A stronger result on asymptotic optimality of some of the proposed sequences is also established.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 12 )