By Topic

A CMOS Broadband Power Amplifier With a Transformer-Based High-Order Output Matching Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hua Wang ; California Inst. of Technol., Pasadena, CA, USA ; Sideris, C. ; Hajimiri, A.

A transformer-based high-order output matching network is proposed for broadband power amplifier design, which provides optimum load impedance for maximum output power within a wide operating frequency range. A design methodology to convert a canonical bandpass network to the proposed matching configuration is also presented in detail. As a design example, a push-pull deep class-AB PA is implemented with a third-order output network in a standard 90 nm CMOS process. The leakage inductances of the on-chip 2:1 transformer are absorbed into the output matching to realize the third-order network with only two inductor footprints for area conservation. The amplifier achieves a 3 dB bandwidth from 5.2 to 13 GHz with 25.2 dBm peak and 21.6% peak PAE. The EVM for QPSK and 16-QAM signals both with 5 Msample/s are below 3.6% and 5.9% at the output 1 dB compression point. This verifies the PA's capability of amplifying a narrowband modulated signal whose center-tone can be programmed across a large frequency range. The measured BER for transmitting a truly broadband PRBS signal up to 7.5 Gb/s is less than 10 , demonstrating the PA's support for an instantaneous wide operation bandwidth.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:45 ,  Issue: 12 )