Cart (Loading....) | Create Account
Close category search window
 

Evaluation of Pulsed-Field Magnetization on a Superconducting Bulk Magnet System Using a 13 K Refrigerator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yokoyama, K. ; Dept. of Electr. & Electron. Eng., Ashikaga Inst. of Technol., Tochigi, Japan ; Oka, T. ; Noto, K.

We developed a small-size superconducting bulk magnet system using a 13 K refrigerator. The industrial applications of bulk magnets demand the miniaturization of the magnet apparatus as well as the enhancement of the magnetic field. Downsizing of the apparatus can be achieved by restricting the magnetizing method to pulsed-field magnetization (PFM). PFM of a high-performance bulk, on the other hand, presents a difficult problem, i.e., large heat generation after the application of pulsed fields suppresses a trapped field. Therefore, a Gifford-McMahon cycle helium refrigerator with low ultimate temperature and large cooling capacity was adopted with the expectation to increase the Jc and quickly remove the heat. In a previous magnetizing test using a GdBa2Cu3O7-x bulk material, a trapped field of 2.76 T was achieved. In this paper, we evaluate a trapped field when applying a magnetic field of constant amplitude with varying temperature, and we used a multi-pulse technique with a stepwise cooling (MPSC) method in which several pulsed fields were applied as a function of the amplitude and temperature to improve the trapped field. We successfully trapped a magnetic field of 3.02 T.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.