By Topic

Distributed Subgradient Methods for Convex Optimization Over Random Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lobel, I. ; Inf., Oper. & Manage. Sci. Dept., New York Univ., New York, NY, USA ; Ozdaglar, A.

We consider the problem of cooperatively minimizing the sum of convex functions, where the functions represent local objective functions of the agents. We assume that each agent has information about his local function, and communicate with the other agents over a time-varying network topology. For this problem, we propose a distributed subgradient method that uses averaging algorithms for locally sharing information among the agents. In contrast to previous works on multi-agent optimization that make worst-case assumptions about the connectivity of the agents (such as bounded communication intervals between nodes), we assume that links fail according to a given stochastic process. Under the assumption that the link failures are independent and identically distributed over time (possibly correlated across links), we provide almost sure convergence results for our subgradient algorithm.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 6 )