By Topic

Uncertainty Propagation in Analytic Availability Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amita Devaraj ; Dept. of ECE, Duke Univ., Durham, NC, USA ; Kesari Mishra ; Kishor S. Trivedi

In this paper, we discuss a Monte Carlo sampling based method for propagating the epistemic uncertainty in model parameters, through the system availability model. We also outline methods to compute the number of samples needed to obtain a desired confidence interval for various scenarios. We illustrate this method with a real system example and discuss the results obtained. While our example discusses confidence interval for system availability, this method can be directly applied to compute uncertainty for other dependability, performance and perform ability measures, computed by solving stochastic analytic models. We also emphasize the fact that no simulation is carried out in our method but a repeated sampling is performed over the parameter space followed by the execution of the analytic model with the final phase being the statistical analysis of the output vector.

Published in:

Reliable Distributed Systems, 2010 29th IEEE Symposium on

Date of Conference:

Oct. 31 2010-Nov. 3 2010