Cart (Loading....) | Create Account
Close category search window
 

Boundary Detection in Medical Images Using Edge Following Algorithm Based on Intensity Gradient and Texture Gradient Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Somkantha, K. ; Dept. of Electr. Eng., Chiang Mai Univ., Chiang Mai, Thailand ; Theera-Umpon, N. ; Auephanwiriyakul, S.

Finding the correct boundary in noisy images is still a difficult task. This paper introduces a new edge following technique for boundary detection in noisy images. Utilization of the proposed technique is exhibited via its application to various types of medical images. Our proposed technique can detect the boundaries of objects in noisy images using the information from the intensity gradient via the vector image model and the texture gradient via the edge map. The performance and robustness of the technique have been tested to segment objects in synthetic noisy images and medical images including prostates in ultrasound images, left ventricles in cardiac magnetic resonance (MR) images, aortas in cardiovascular MR images, and knee joints in computerized tomography images. We compare the proposed segmentation technique with the active contour models (ACM), geodesic active contour models, active contours without edges, gradient vector flow snake models, and ACMs based on vector field convolution, by using the skilled doctors' opinions as the ground truths. The results show that our technique performs very well and yields better performance than the classical contour models. The proposed method is robust and applicable on various kinds of noisy images without prior knowledge of noise properties.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.