Cart (Loading....) | Create Account
Close category search window
 

Analysis of Transverse Resistance Measurements in {\rm Nb}_{3}{\rm Sn} Superconducting Wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Breschi, M. ; Dept. of Electr. Eng., Univ. of Bologna, Bologna, Italy ; Corato, V.. ; Zignani, C.F. ; Ribani, P.L.

The superconducting wires are generally made of several hundreds or thousands of fine superconducting filaments embedded in a metallic matrix. Several relevant properties of the superconducting wires depend on the transverse resistances between filament bundles. In Nb3Sn wires realized with Bronze Route or Internal Tin technology, the presence of the bronze matrix can determine a significant increase of the transverse interfilament resistance with respect to wires with copper matrix. This increased resistivity in turn plays a role in determining the ac losses, thermal stability, and sensitivity to mechanical bending of the wire. The direct measurements of the transverse electrical resistances give useful information both for stability computations and to analyze the mechanical performance of the wire. The complexity of these measurements is however remarkable, due to the current distribution phenomena that occur among superconducting filaments during these tests. This paper presents the application of a 2D FEM model of the wire cross section and of a 3D electrical circuit model of the wire sample to derive qualitative and quantitative information about the transverse electrical resistance matrix. The paper shows that a detailed qualitative and quantitative description of the measurement results can only be obtained by means of a 3D model, that allows computing the current distribution along and across the sample length during the measurements.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.