By Topic

Demand Side Load Management Using a Three Step Optimization Methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
V. Bakker ; Dept. of Electr. Eng., Math. & Comput. Sci., Univ. of Twente, Enschede, Netherlands ; M. G. C. Bosman ; A. Molderink ; J. L. Hurink
more authors

In order to keep a proper functional electricity grid and to prevent large investments in the current grid, the creation, transmission and consumption of electricity needs to be controlled and organized in a different way as done nowadays. Smart meters, distributed generation and -storage and demand side management are novel technologies introduced to reach a sustainable, more efficient and reliable electricity supply. Although these technologies are very promising to reach these goals, coordination between these technologies is required. It is therefore expected that ICT is going to play an important role in future smart grids. In this paper, we present the results of our three step control strategy designed to optimize the overall energy efficiency and to increase the amount of generation based on renewable resources with the ultimate goal to reduce the CO2 emission resulting from generation electricity. The focus of this work is on the control algorithms used to reshape the energy demand profile of a large group of buildings and their requirements on the smart grid. In a use case, steering a large group of freezers, we are able to reshape a demand profile full of peaks to a nicely smoothed demand profile, taking into the account the amount of available communication bandwidth and exploiting the available computation power distributed in the grid.

Published in:

Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on

Date of Conference:

4-6 Oct. 2010