Cart (Loading....) | Create Account
Close category search window
 

Performance Analysis and Enhancements of Narrowband OFDM Powerline Communication Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Il Kim ; Commun. & Med. Syst. Lab., Texas Instrum., Dallas, TX, USA ; Varadarajan, B. ; Dabak, A.

We compare the performance of different powerline communication (PLC) systems under various realistic noise conditions, namely white noise, periodic impulsive noise in the time-domain, and narrowband co-channel interference. We base the study on narrowband (<; 500 kHz) PLC based on OFDM in general, with specific focus on two prominent PLC industrial specifications for e-metering applications: PRIME and G3. From the simulation results, for white noise and for higher coding rates we find that the Reed Solomon (RS) outer code used in G3 yields significant gains, but can be improved by adapting the RS code rate to the packet size. For lower coding rates, we do not find significant advantage of adding RS coding. For time-domain impulsive noise, we find that the best performance-complexity tradeoff is obtained by choosing the interleaver size to be somewhere between one symbol (PRIME) and the entire packet (G3). Specifically, it is beneficial to choose an interleaver whose size is comparable to the AC lines period, which is the typically inter-burst duration of impulsive noise. For narrowband interference, both PRIME and G3 offer good performance, but PRIME is preferable because it achieves higher data rates by employing higher order modulation. The immunity to narrowband interference makes PRIME/G3 an attractive candidate for automotive charging applications.

Published in:

Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on

Date of Conference:

4-6 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.