By Topic

Fault Detection and Localization in Smart Grid: A Probabilistic Dependence Graph Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Miao He ; Sch. of Electr., Comput. & Energy Eng., Arizona State Univ., Tempe, AZ, USA ; Junshan Zhang

Fault localization in the nation's power grid networks is known to be challenging, due to the massive scale and inherent complexity. In this study, we model the phasor angles across the buses as a Gaussian Markov random field (GMRF), where the partial correlation coefficients of GMRF are quantified in terms of the physical parameters of power systems. We then take the GMRF-based approach for fault diagnosis, through change detection and localization in the partial correlation matrix of GMRF. Specifically, we take advantage of the topological hierarchy of power systems, and devise a multi-resolution inference algorithm for fault localization, in a distributed manner. Simulation results are used to demonstrate the effectiveness of the proposed approach.

Published in:

Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on

Date of Conference:

4-6 Oct. 2010