By Topic

Dynamic bandwidth allocation for long-reach PON: overcoming performance degradation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

A passive optical network, with its inherent point to multi-point structure, allows for centralized placement of active equipment and possible extension of its boundary towards core networks. This property of the PON can be exploited for node consolidation where multiple central offices are replaced by a single one covering a larger service area. Such node consolidation is being particularly driven by the need for network operational cost saving, and is offering significant challenges to PONs. The degree of node consolidation that can be achieved is limited by the reach of conventional PON systems. In order to achieve a larger degree of node consolidation, an extension of the PON reach, beyond the conventional 20 km, is required. This article addresses the challenges of the dynamic bandwidth allocation, where increased reach results in a degradation of DBA performance and quality of service support. This degradation is a consequence of the increased propagation delay of the DBA messages exchanged between different PON elements. A potential solution to the performance degradation is the introduction of a multi-threaded DBA. In this article, we examine for both Gigabit PON and Ethernet PON, the extent to which DBA performance degradation can be reduced by exploiting multi-threading. It is found that for both standards, multi-threading, if done properly, can be used to mitigate the performance degradation due to the increased reach. To make bandwidth allocation efficient, new schemes for coordinating the multiple threads are required in long reach PON.

Published in:

Communications Magazine, IEEE  (Volume:48 ,  Issue: 11 )