By Topic

Process Dependence of Proton-Induced Degradation in GaN HEMTs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Roy, T. ; Dept. of Electr. Eng. & Comput. Sci., Vanderbilt Univ., Nashville, TN, USA ; En Xia Zhang ; Puzyrev, Y.S. ; Fleetwood, D.M.
more authors

The 1.8-MeV proton radiation responses are compared for AlGaN/GaN HEMTs grown under Ga-rich, N-rich, and NH3-rich conditions. The NH3-rich devices are more susceptible to proton irradiation than the Ga-rich and N-rich devices. The 1/ f noise of the devices increases with increasing fluence. Density functional theory calculations show that N vacancies and Ga-N divacancies lead to enhanced noise in these devices.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:57 ,  Issue: 6 )