By Topic

Performance Analysis of Contention Based Bandwidth Request Mechanisms in WiMAX Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qiang Ni ; Dept. of Electron. & Comput. Eng., Brunel Univ., Uxbridge, UK ; Ling Hu ; Vinel, A. ; Yang Xiao
more authors

WiMAX networks have received wide attention as they support high data rate access and amazing ubiquitous connectivity with great quality-of-service (QoS) capabilities. In order to support QoS, bandwidth request (BW-REQ) mechanisms are suggested in the WiMAX standard for resource reservation, in which subscriber stations send BW-REQs to a base station which can grant or reject the requests according to the available radio resources. In this paper we propose a new analytical model for the performance analysis of various contention based bandwidth request mechanisms, including grouping and no-grouping schemes, as suggested in the WiMAX standard. Our analytical model covers both unsaturated and saturated traffic load conditions in both error-free and error-prone wireless channels. The accuracy of this model is verified by various simulation results. Our results show that the grouping mechanism outperforms the no-grouping mechanism when the system load is high, but it is not preferable when the system load is light. The channel noise degrades the performance of both throughput and delay.

Published in:

Systems Journal, IEEE  (Volume:4 ,  Issue: 4 )