By Topic

A 32 nm High-k Metal Gate SRAM With Adaptive Dynamic Stability Enhancement for Low-Voltage Operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Kolar, P. ; Intel Corp., Hillsboro, OR, USA ; Karl, E. ; Bhattacharya, U. ; Hamzaoglu, F.
more authors

SRAM bitcell design margin continues to shrink due to random and systematic process variation in scaled technologies and conventional SRAM faces a challenge in realizing the power and density benefits of technology scaling. Smart and adaptive assist circuits can improve design margins while satisfying SRAM power and performance requirements in scaled technologies. This paper introduces an adaptive, dynamic SRAM word-line under-drive (ADWLUD) scheme that uses a bitcell-based sensor to dynamically optimize the strength of WLUD for each die. The ADWLUD sensor enables 130 mV reduction in SRAM Vccmin while increasing frequency yield by 9% over conventional SRAM without WLUD. The sensor area overhead is limited to 0.02% and power overhead is 2% for a 3.4 Mb SRAM array.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:46 ,  Issue: 1 )