Cart (Loading....) | Create Account
Close category search window

Developing a Time Series Model Based on Particle Swarm Optimization for Gold Price Forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hadavandi, E. ; Dept. of Ind. Eng., Sharif Univ. of Technol., Tehran, Iran ; Ghanbari, A. ; Abbasian-Naghneh, S.

The trend of gold price in the market is the most important consideration for the investors of the gold, and serves as the basis of gaining profit, so there are scholars who try to forecast the gold price. Forecasting accuracy is one of the most important factors involved in selecting a forecasting method. Besides, nowadays artificial intelligence (AI) techniques are becoming more and more widespread because of their accuracy, symbolic reasoning, flexibility and explanation capabilities. Among these techniques, particle swarm optimization (PSO) is one of the best AI techniques for optimization and parameter estimation. In this study a PSO-based time series model for the gold price forecasting is proposed that uses PSO algorithm for parameter estimation. We evaluate capability of the proposed model by applying it on daily observation of gold price and compare the outcomes with previous methods using mean absolute error (MAE). Results show that the proposed approach is able to cope with the fluctuations of gold price time series and it also yields good prediction accuracy, so it can be considered as a suitable tool for financial forecasting problems.

Published in:

Business Intelligence and Financial Engineering (BIFE), 2010 Third International Conference on

Date of Conference:

13-15 Aug. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.