Cart (Loading....) | Create Account
Close category search window

Generation of amber III-nitride based light emitting diodes by indium rich InGaN quantum dots with InGaN wetting layer and AlN encapsulation layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Soh, C.B. ; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602 ; Liu, W. ; Chua, S.J. ; Ang, S.S.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Indium rich InGaN nanostructures grown by metalorganic chemical vapor deposition were incorporated in InGaN/GaN quantum wells for long wavelength generation. These results were achieved by optimizing the growth temperature of the nanostructures, InGaN quantum well, the AlN capping layer and the GaN barrier layers. Before the growth of nanostructures, a thin InGaN wetting layer was included to reduce the lattice mismatch as well as to enhance the deposition of indium-rich InGaN nanostructures These individual quantum wells were each subsequently capped with an AlN layer which better preserved the In-rich phase in the nanostructures and prevented the indium interdiffusion between the InGaN/GaN heterojunctions. The AlN capping layer also reduces the effect of piezeoelectric field in the active layers of the light emitting diodes as seen from the reduction in the blueshift in the electroluminescence peaks with higher injection currents. The energy band profile of such a structure is discussed.

Published in:

Journal of Applied Physics  (Volume:108 ,  Issue: 9 )

Date of Publication:

Nov 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.