Cart (Loading....) | Create Account
Close category search window
 

Positive-Feedback Theory of Hysteretic Recoil Loops in Hard Ferromagnetic Materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Harrison, R.G. ; Dept. of Electron., Carleton Univ., Ottawa, ON, Canada

This paper develops a physically-based analytical theory that can be used to model recoil loops, as well as major loops and first- and second-order return curves, in hard ferromagnetic materials that display return-point memory. Atomic-scale quantum-mechanical considerations lead to basic S-shaped magnetization curves that account for hysteretic effects in major and minor loops, as well as their reversibility and irreversibility. These loops exhibit perfect closure only in the presence of the return-point-memory effect. Field (energy) contributions from this hysteretic scenario are summed with contributions due to the classical-physics domain-scale anhysteretic scenario and to the macroscopic demagnetizing field, to obtain a summed scenario that can model isotropic and certain anisotropic materials. Analytical expressions are obtained for all reversal curves up to second order, under the return-point-memory constraint, so that closed recoil loops can be modeled. The theory is validated by comparison with measured data for five different materials.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.