By Topic

Computer-Based Simulation and Scaled Laboratory Bench System for the Teaching and Training of Engineers on the Control of Doubly Fed Induction Wind Generators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Arribas, J.R. ; Dept. of Electr. Eng., Univ. Politec. de Madrid, Madrid, Spain ; Veganzones, C. ; Blazquez, F. ; Platero, C.A.
more authors

Among the existing renewable sources, wind energy is reaching production rates that are becoming important on the worldwide energy scene. Since the control of these wind generators is a very technical discipline, practical teaching methodologies are of special relevance. Paradoxically, in the past, the training of engineers specializing in this area has lacked the practical component represented by field tests, due to the difficulty of access to this kind of installation. This paper presents a system designed for use both in teaching and training procedures for control strategies for wind generators with doubly fed induction generator (DFIG) technology. The system includes two phases or levels of use: the first being a simulation phase based on computer models, and the second, an advanced level which allows for the conducting of tests on a laboratory scaled workbench composed of a wind turbine emulator coupled to an electric generator. With this equipment, the effectiveness of the wind generator regulation systems can be analyzed from the point of view of the maximum power point tracking control strategy, as well as from that of the contribution produced by the wind generator to the control of the operation of the electric grid to which it is connected.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 3 )