By Topic

A Distributed Spatial-Temporal Similarity Data Storage Scheme in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haiying Shen ; Dept. of Electr. & Comput. Eng., Clemson Univ., Clemson, SC, USA ; Lianyu Zhao ; Ze Li

Since centralized data storage and search schemes often lead to high overhead and latency, distributed data-centric storage becomes a preferable approach in large-scale wireless sensor networks (WSNs). However, most of existing distributed methods lack optimization for spatial-temporal search to query events occurred in a certain geographical area and a certain time period. Furthermore, for data search routing, most methods rely on locating systems (e.g., GPS), which consume high energy. This paper proposes a distributed spatial-temporal Similarity Data Storage (SDS) scheme. SDS provides efficient spatial-temporal and similarity data searching service, and is applicable for both static and dynamic WSNs. It disseminates event data in such a way that the distance between WSN neighborhoods represents the similarity of data stored in them. In addition, SDS carpooling routing algorithm efficiently routes messages without the aid of GPS. Theoretical and experimental results show that SDS yields significant improvements on the efficiency of data querying compared with existing approaches, and obtains stable performance in dynamic environments.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:10 ,  Issue: 7 )