Cart (Loading....) | Create Account
Close category search window
 

Energy Time Series Forecasting Based on Pattern Sequence Similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Martinez Alvarez, F. ; Area de Lenguajes y Sist. Informdticos, Univ. Pablo de Olavide, Sevilla, Spain ; Troncoso, A. ; Riquelme, J.C. ; Aguilar Ruiz, J.S.

This paper presents a new approach to forecast the behavior of time series based on similarity of pattern sequences. First, clustering techniques are used with the aim of grouping and labeling the samples from a data set. Thus, the prediction of a data point is provided as follows: first, the pattern sequence prior to the day to be predicted is extracted. Then, this sequence is searched in the historical data and the prediction is calculated by averaging all the samples immediately after the matched sequence. The main novelty is that only the labels associated with each pattern are considered to forecast the future behavior of the time series, avoiding the use of real values of the time series until the last step of the prediction process. Results from several energy time series are reported and the performance of the proposed method is compared to that of recently published techniques showing a remarkable improvement in the prediction.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.