By Topic

Effective and Efficient Shape-Based Pattern Detection over Streaming Time Series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yueguo Chen ; Key Lab. of Data Eng. & Knowledge Eng., Renmin Univ. of China, Beijing, China ; Ke Chen ; Nascimento, M.A.

Existing distance measures of time series such as the euclidean distance, DTW, and EDR are inadequate in handling certain degrees of amplitude shifting and scaling variances of data items. We propose a novel distance measure of time series, Spatial Assembling Distance (SpADe), that is able to handle noisy, shifting, and scaling in both temporal and amplitude dimensions. We further apply the SpADe to the application of streaming pattern detection, which is very useful in trend-related analysis, sensor networks, and video surveillance. Our experimental results on real time series data sets show that SpADe is an effective distance measure of time series. Moreover, high accuracy and efficiency are achieved by SpADe for continuous pattern detection in streaming time series.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 2 )