By Topic

Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pothkow, K. ; Konrad-Zuse-Zentrum fur Informationstechnik Berlin (ZIB), Berlin, Germany ; Hege, H.-C.

Uncertainty is ubiquitous in science, engineering and medicine. Drawing conclusions from uncertain data is the normal case, not an exception. While the field of statistical graphics is well established, only a few 2D and 3D visualization and feature extraction methods have been devised that consider uncertainty. We present mathematical formulations for uncertain equivalents of isocontours based on standard probability theory and statistics and employ them in interactive visualization methods. As input data, we consider discretized uncertain scalar fields and model these as random fields. To create a continuous representation suitable for visualization we introduce interpolated probability density functions. Furthermore, we introduce numerical condition as a general means in feature-based visualization. The condition number-which potentially diverges in the isocontour problem-describes how errors in the input data are amplified in feature computation. We show how the average numerical condition of isocontours aids the selection of thresholds that correspond to robust isocontours. Additionally, we introduce the isocontour density and the level crossing probability field; these two measures for the spatial distribution of uncertain isocontours are directly based on the probabilistic model of the input data. Finally, we adapt interactive visualization methods to evaluate and display these measures and apply them to 2D and 3D data sets.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:17 ,  Issue: 10 )