By Topic

A unified approach to the linear camera calibration problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. I. Grosky ; Dept. of Comput. Sci., Wayne State Univ., Detroit, MI, USA ; L. A. Tamburino

The camera calibration process relates camera system measurements (pixels) to known reference points in a three-dimensional world coordinate system. The calibration process is viewed as consisting of two independent phases: the first is removing geometrical camera distortion so that rectangular calibration grids are straightened in the image plane, and the second is using a linear affine transformation as a map between the rectified camera coordinates and the geometrically projected coordinates on the image plane of known reference points. Phase one is camera-dependent, and in some systems may be unnecessary. Phase two is concerned with a generic model that includes 12 extrinsic variables and up to five intrinsic parameters. General methods handling additional constraints on the intrinsic variables in a manner consistent with explicit satisfaction of all six constraints on the orthogonal rotation matrix are presented. The use of coplanar and noncoplanar calibration points is described

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:12 ,  Issue: 7 )