Cart (Loading....) | Create Account
Close category search window

Skeleton Cuts—An Efficient Segmentation Method for Volume Rendering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Dehui Xiang ; Inst. of Autom., Chinese Acad. of Sci. & Grad. Univ. of Chinese Acad. of Sci., Beijing, China ; Tian, Jie ; Fei Yang ; Qi Yang
more authors

Volume rendering has long been used as a key technique for volume data visualization, which works by using a transfer function to map color and opacity to each voxel. Many volume rendering approaches proposed so far for voxels classification have been limited in a single global transfer function, which is in general unable to properly visualize interested structures. In this paper, we propose a localized volume data visualization approach which regards volume visualization as a combination of two mutually related processes: the segmentation of interested structures and the visualization using a locally designed transfer function for each individual structure of interest. As shown in our work, a new interactive segmentation algorithm is advanced via skeletons to properly categorize interested structures. In addition, a localized transfer function is subsequently presented to assign optical parameters via interested information such as intensity, thickness and distance. As can be seen from the experimental results, the proposed techniques allow to appropriately visualize interested structures in highly complex volume medical data sets.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:17 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.