Cart (Loading....) | Create Account
Close category search window
 

3D Integration technology: Status and application development

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ramm, P. ; Fraunhofer EMFT (formerly IZM-M), Munich, Germany ; Klumpp, A. ; Weber, J. ; Lietaer, N.
more authors

As predicted by the ITRS roadmap, semiconductor industry development dominated by shrinking transistor gate dimensions alone will not be able to overcome the performance and cost problems of future IC fabrication. Today 3D integration based on through silicon vias (TSV) is a well-accepted approach to overcome the performance bottleneck and simultaneously shrink the form factor. Several full 3D process flows have been demonstrated, however there are still no microelectronic products based on 3D TSV technologies in the market - except CMOS image sensors. 3D chip stacking of memory and logic devices without TSVs is already widely introduced in the market. Applying TSV technology for memory on logic will increase the performance of these advanced products and simultaneously shrink the form factor. In addition to the enabling of further improvement of transistor integration densities, 3D integration is a key technology for integration of heterogeneous technologies. Miniaturized MEMS/IC products represent a typical example for such heterogeneous systems demanding for smart system integration rather than extremely high transistor integration densities. The European 3D technology platform that has been established within the EC funded e-CUBES project is focusing on the requirements coming from heterogeneous systems. The selected 3D integration technologies are optimized concerning the availability of devices (packaged dies, bare dies or wafers) and the requirements of performance and form factor. There are specific technology requirements for the integration of MEMS/NEMS devices which differ from 3D integrated ICs (3D-IC). While 3D-ICs typically show a need for high interconnect densities and conductivities, TSV technologies for the integration of MEMS to ICs may result in lower electrical performance but have to fulfill other requirements, e. g. mechanical stability issues. 3D integration of multiple MEMS/IC stacks was successfully demonstrated for the fabrication of minia- - turized sensor systems (e-CUBES), as for automotive, health & fitness and aeronautic applications.

Published in:

ESSCIRC, 2010 Proceedings of the

Date of Conference:

14-16 Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.