By Topic

Geo-Spatial resource analysis and optimization of investment strategies for renewable energy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sergey Malinchik ; Lockheed Martin Advanced Technology Laboratories, 3 Executive Campus, Suite 600, Cherry Hill, NJ, USA ; Alden Roberts ; Steven Fierro

In this paper we describe a concept that brings geo-spatial data analysis together with optimal modeling of renewable energy planning and investment processes to aid in decision making (“when and where” to invest), a process that takes into account development cost, resource constraints and requirements for new infrastructure. This concept is implemented in a new tool named GSPEIS (Geo-Spatial Planner for Energy Investment Strategies). The GSPEIS system accomplishes these goals by bringing a powerful visualization framework that enables the user to understand and explore the problem space, together with genetic algorithm-based optimization engine that helps users interactively generate optimal solutions. We demonstrate here how our innovative approach with a heavy focus on user involvement enables analysts and decision makers to (1) configure the system and filter critical inputs, (2) run underlying models that annotate the visualization and configuration space with specific costs, statistics and constraints, and (3) optimize across the goal space for different objectives such as investment return, energy production, or revenue. Our approach provides visually controlled spatial optimization across resources and infrastructure while adhering to a diverse set of constraints.

Published in:

Innovative Technologies for an Efficient and Reliable Electricity Supply (CITRES), 2010 IEEE Conference on

Date of Conference:

27-29 Sept. 2010