By Topic

Gabor filtering-based scale and rotation invariance feature for 2d barcode region detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Meng Wang ; School of Electronic Information Engineering, Tianjin University, China 300072 ; Li-Na Li ; Zhao-Xuan Yang

2D barcode region detection is a non trivial problem for barcode revognition and decoding especially in complex backgrounds. Currently, morphological processing has been widely applied to extract potential regions of Data Matrix barcodes due to its low computation complexity. However, this method leads to two problems, adaptive selection of morphological structuring element and high false accept rate. To solve these problems, this paper proposes an innovative method for 2D barcode region detection based on Gabor filtering and BP neural network. The contributions are two folds: 1) we propose a texture feature formulation independent of scale and rotation; 2) BP neural network can avoid the difficulty in morphological structure construction. Large scale experiments show the accuracy and robustness of the proposed method over the traditional morphological method.

Published in:

2010 International Conference on Computer Application and System Modeling (ICCASM 2010)  (Volume:5 )

Date of Conference:

22-24 Oct. 2010