Cart (Loading....) | Create Account
Close category search window
 

Particle-In-Cell Simulation Analysis of a Multicavity W-Band Sheet Beam Klystron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Young-Min Shin ; Dept. of Appl. Sci., Univ. of California, Davis, CA, USA ; Jian-xun Wang ; Barnett, L.R. ; Luhmann, N.C.

A W-band sheet beam klystron is being developed as a portable coherent radiation source for active denial system application. The interaction circuit design employs eight stagger-tuned cavities (multigap structure) and a 12:1-aspect-ratio sheet electron beam (74 kV and 3.6 A) to produce 50-kW peak power (2.5 kW average) and 40-dB gain with 200-MHz instantaneous bandwidth. The output cavity is designed to have a quasi-optical (QO) external coupler utilizing optical wave superposition. The circuit design has been optimized by using a 1-D disk-model code and a 3-D particle-in-cell (PIC) solver. The iterative simulation analysis predicts that a five-gap configuration is the optimum structure for a QO-output cavity because it provides sufficient output power and stable single frequency operation without mode competition. The 3-D PIC simulation predicts that the designed circuit produces stable 50-kW output power from a 4-W input driving signal, with 40-dB gain, at 94.5 GHz. The frequency sweep predicts a 3-dB bandwidth of 150 MHz in 2π-mode operation. The numerical simulation results agree well with the small-signal analysis, thereby providing confidence in the predicted output performance of the QO klystron amplifier module.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.