By Topic

Investigation Into the Application of Artificial Magnetic Conductors to Bandwidth Broadening, Gain Enhancement and Beam Shaping of Low Profile and Conventional Monopole Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Foroozesh, A. ; Dept. of Electr. & Comput. Eng., Univ. of Manitoba, Winnipeg, MB, Canada ; Shafai, L.

The reflection coefficient phase is investigated for several different artificial magnetic conductors (AMCs) having canonical FSS-type shapes. Three of them are selected, each representing a different class, and fine tuned to exhibit identical resonant frequency. Polarization and angular dependence as well as the effects of losses on these structures are studied. Next, a low-profile inverted L-shape monopole antenna (ILSMA) is placed horizontally above the ground plane. Vertical monopole antenna (VMA) is also placed above them. It is shown that using some of the aforementioned AMCs, the input impedance of both ILSMA and VMA can not only be matched, but also the input impedance bandwidth enhancement as wide as 27% and 35% are obtained, respectively. The VMA study on AMC ground planes which reveals a counter-intuitive phenomenon has not been explored in the literature, previously. It is revealed that the broadband characteristics can also be achieved for smaller size of the AMC ground planes, which enables the antenna to be designed in compact size. It is also illustrated that reflection characteristics of the AMC is not sufficient to evaluate AMC performance when it is used as an antenna ground plane. This is illustrated through extensive simulation and measurement results.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 1 )