By Topic

Design and implementation of a 154 kV, ±50 MVAr Transmission STATCOM based on 21-level Cascaded Multilevel Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Gultekin, B. ; Middle East Tech. Univ., Ankara, Turkey ; Gercek, C.O. ; Atalik, T. ; Deniz, M.
more authors

In this research work, design and implementation of a 154 kV, ± 50 MVAr Transmission STATCOM (T-STATCOM) has been carried out primarily for the purposes of reactive power compensation and terminal voltage regulation, and secondarily for power system stability. The implemented T-STATCOM consists of five 10.5 kV, ±12 MVAr Cascaded Multilevel Converter (CMC) modules operating in parallel. The power stage of each CMC is composed of five series connected H-Bridges (HB) in each phase, thus resulting in 21-level line-to-line voltages. Due to modularity and flexibility of implemented HBs, a CMC module power density of 250kVAr/m3 is reached, thus making the mobility of the system implementable. DC link capacitor voltages of HBs are perfectly balanced by means of the Modified Selective Swapping Algorithm proposed. The field tests carried out at full load in the 154 kV transformer substation where T-STATCOM is installed and put into service have shown that the steady-state and transient responses of the system are quite satisfactory.

Published in:

Energy Conversion Congress and Exposition (ECCE), 2010 IEEE

Date of Conference:

12-16 Sept. 2010