By Topic

Optical Theorem Helps Understand Thresholds of Lasing in Microcavities With Active Regions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Smotrova, E.I. ; Inst. of Radiophys. & Electron., Nat. Acad. of Sci. of Ukraine, Kharkiv, Ukraine ; Byelobrov, V.O. ; Benson, T.M. ; Ctyroky, J.
more authors

Within the framework of the recently proposed approach to view the lasing in open microcavities as a linear eigenproblem for the Maxwell equations with exact boundary and radiation conditions, we study the correspondence between the modal thresholds and field overlap coefficients. Macroscopic gain is introduced into the cavity material within the active region via the “active” imaginary part of the refractive index. Each eigenvalue is constituted of two positive numbers, namely, the lasing wavenumber and the threshold value of material gain. This approach yields clear insight into the lasing thresholds of individual modes. The Optical Theorem, if applied to the lasing-mode field, puts the familiar “” condition on firm footing. It rigorously quantifies the role of the spatial overlap of the mode E-field with the active region, whose shape and location are efficient tools of the threshold manipulation. Here, the effective mode volume in open resonator is introduced from first principles. Examples are given for the 1-D cavities equipped with active layers and distributed Bragg reflectors and 2-D cavities with active disks and annular Bragg reflectors.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:47 ,  Issue: 1 )