By Topic

A Conjugate Gradient-Based BPTT-Like Optimal Control Algorithm With Vehicle Dynamics Control Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kasac, J. ; Fac. of Mech. Eng. & Naval Archit., Univ. of Zagreb, Zagreb, Croatia ; Deur, J. ; Novakovic, B. ; Kolmanovsky, I.V.
more authors

The paper presents a gradient-based algorithm for optimal control of nonlinear multivariable systems with control and state vectors constraints. The algorithm has a backward-in-time recurrent structure similar to the backpropagation-through-time algorithm, which is mostly used as a learning algorithm for dynamic neural networks. Other main features of the algorithm include the use of higher order Adams time-discretization schemes, numerical calculation of Jacobians, and advanced conjugate gradient methods for favorable convergence properties. The algorithm performance is illustrated on an example of off-line vehicle dynamics control optimization based on a realistic high-order vehicle model. The optimized control variables are active rear differential torque transfer and active rear steering road wheel angle, while the optimization tasks are trajectory tracking and roll minimization for a double lane change maneuver.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:19 ,  Issue: 6 )