By Topic

Size-Controllable Region-of-Interest in Scalable Image Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chee Sun Won ; Dept. of Electron. Eng., Dongguk Univ. - Seoul, Seoul, South Korea ; Shirani, S.

Differentiating region-of-interest (ROI) from non-ROI in an image in terms of relative size as well as fidelity becomes an important functionality for future visual communication environment with a variety of display devices. In this paper, we propose a scalable image representation with the ROI functionality in the spatial domain, which allows us to generate a hierarchy of images with arbitrary sizes. The ROI functionality of our scalable representation is a result of a nonuniform grid transformation in the spatial domain, where only the center of ROI and an expansion parameter are to be known. Our grid transformation guarantees no loss of information within the area of ROI.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 5 )