Cart (Loading....) | Create Account
Close category search window
 

Compact Asymmetric-Slit Microstrip Antennas for Circular Polarization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nasimuddin ; Inst. for Infocomm Res., Singapore, Singapore ; Xianming Qing ; Zhi Ning Chen

Four compact asymmetric-slit microstrip antennas are proposed and studied for circular polarization. By cutting asymmetrical slits in diagonal directions onto the square microstrip patches, the single coaxial-feed microstrip patch antennas are realized for circularly polarized radiation with compact antenna size. The performances of the proposed antennas with several asymmetric-slit shapes onto the patch radiators are compared. The measured 10-dB return loss and 3-dB axial-ratio bandwidths of the antenna prototype are around 2.5% and 0.5%, respectively. The proposed asymmetric-slit configurations are useful for compact circularly polarized microstrip patch antennas and array design.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.