By Topic

Language Models and Topic Models for Personalizing Tag Recommendation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ralf Krestel ; L3S Res. Center, Hannover, Germany ; Peter Fankhauser

More and more content on the Web is generated by users. To organize this information and make it accessible via current search technology, tagging systems have gained tremendous popularity. Especially for multimedia content they allow to annotate resources with keywords (tags) which opens the door for classic text-based information retrieval. To support the user in choosing the right keywords, tag recommendation algorithms have emerged. In this setting, not only the content is decisive for recommending relevant tags but also the user's preferences. In this paper we introduce an approach to personalized tag recommendation that combines a probabilistic model of tags from the resource with tags from the user. As models we investigate simple language models as well as Latent Dirichlet Allocation. Extensive experiments on a real world dataset crawled from a big tagging system show that personalization improves tag recommendation, and our approach significantly outperforms state-of-the-art approaches.

Published in:

Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on  (Volume:1 )

Date of Conference:

Aug. 31 2010-Sept. 3 2010