By Topic

A Particle Swarm Optimization Approach for Routing in VLSI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
M. Nasir Ayob ; Fac. of Electr. Eng., Univ. Teknol. Malaysia, Skudai, Malaysia ; Zulkifli Md Yusof ; Asrul Adam ; Amar Faiz Zainal Abidin
more authors

The performance of very large scale integration (VLSI) circuits is depends on the interconnected routing in the circuits. In VLSI routing, wire sizing, buffer sizing, and buffer insertion are techniques to improve power dissipation, area usage, noise, crosstalk, and time delay. Without considering buffer insertion, the shortest path in routing is assumed having the minimum delay and better performance. However, the interconnect delay can be further improved if buffers are inserted at proper locations along the routing path. Hence, this paper proposes a heuristic technique to simultaneously find the optimal routing path and buffer location for minimal interconnect delay in VLSI based on particle swarm optimization (PSO). PSO is a robust stochastic optimization technique based on the movement and information sharing of swarms. In this study, location of doglegs is employed to model the particles that represent the routing solutions in VLSI. The proposed approach has a good potential in VLSI routing and can be further extended in future.

Published in:

Computational Intelligence, Communication Systems and Networks (CICSyN), 2010 Second International Conference on

Date of Conference:

28-30 July 2010